Step of Proof: lt_int_eq_false_elim
12,41
postcript
pdf
Inference at
*
I
of proof for Lemma
lt
int
eq
false
elim
:
i
,
j
:
. (
i
<z
j
= ff)
(
(
i
<
j
))
latex
by ((UnivCD)
CollapseTHENA ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n
C
)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
1.
i
:
C1:
2.
j
:
C1:
3.
i
<z
j
= ff
C1:
(
i
<
j
)
C
.
Definitions
,
t
T
,
P
Q
,
x
:
A
.
B
(
x
)
Lemmas
bfalse
wf
,
lt
int
wf
,
bool
wf
origin